The converse of the statement "If $p < q$, then $p -x < q -x"$ is -
If $p < q,$ then $p -x > q -x$
If $p > q$, then $p -x > q -x$
If $p -x > q -x,$ then $p > q$
If $p -x < q -x,$ then $p < q$
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to
Which of the following statements is a tautology?
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is